Teresa Scassa - Blog

Ontario is currently holding public hearings on a new bill which, among other things, introduces a provision regarding the use of AI in hiring in Ontario. Submissions can be made until February 13, 2024. Below is a copy of my submission addressing this provision.

 

The following is my written submission on section 8.4 of Bill 149, titled the Working for Workers Four Act, introduced in the last quarter of 2023. I am a law professor at the University of Ottawa. I am making this submission in my individual capacity.

Artificial intelligence (AI) tools are increasingly common in the employment context. Such tools are used in recruitment and hiring, as well as in performance monitoring and assessment. Section 8.4 would amend the Employment Standards Act to include a requirement for employers to provide notice of the use of artificial intelligence in the screening, assessment, or selection of applicants for a publicly advertised job position. It does not address the use of AI in other employment contexts. This brief identifies several weaknesses in the proposal and makes recommendations to strengthen it. In essence, notice of the use of AI in the hiring process will not offer much to job applicants without a right to an explanation and ideally a right to bring any concerns to the attention of a designated person. Employees should also have similar rights when AI is used in performance assessment and evaluation.

1. Definitions and exclusions

If passed, Bill 149 would (among other things) enact the first provision in Ontario to directly address AI. The proposed section 8.4 states:

8.4 (1) Every employer who advertises a publicly advertised job posting and who uses artificial intelligence to screen, assess or select applicants for the position shall include in the posting a statement disclosing the use of the artificial intelligence.

(2) Subsection (1) does not apply to a publicly advertised job posting that meets such criteria as may be prescribed.

The term “artificial intelligence” is not defined in the bill. Rather, s. 8.1 of Bill 149 leaves the definition to be articulated in regulations. This likely reflects concerns that the definition of AI will continue to evolve along with the rapidly changing technology and that it is best to leave its definition to more adaptable regulations. The definition is not the only thing left to regulations. Section 8.4(2) requires regulations to specify the criteria that will allow publicly advertised job postings to be exempted from the disclosure requirement in s. 8.4(1). The true scope and impact of s. 8.4(1) will therefore not be clear until these criteria are prescribed in regulations. Further, s. 8.4 will not take effect until the regulations are in place.

2. The Notice Requirement

The details of the nature and content of the notice that an employer must provide are not set out in s. 8.4, nor are they left to regulations. Since there are no statutory or regulatory requirements, presumably notice can be as simple as “we use artificial intelligence in our screening and selection process”. It would be preferable if notice had to at least specify the stage of the process and the nature of the technique used.

Section 8.4 is reminiscent of the 2022 amendments to the Employment Standards Act which required employers with more than 25 employees to provide their employees with notification of any electronic monitoring taking place in the workplace. As with s. 8.4(1), above, the main contribution of this provision was (at least in theory) enhanced transparency. However, the law did not provide for any oversight or complaints mechanism. Section 8.4(1) is similarly weak. If an employer fails to provide notice of the use of AI in the hiring process, then either the employer is not using AI in recruitment and hiring, or they are failing to disclose it. Who will know and how? A company that is found non-compliant with the notice requirement, once it is part of the Employment Standards Act, could face a fine under s. 132. However, proceedings by way of an offence are a rather blunt regulatory tool.

3. A Right to an Explanation?

Section 8.4(1) does not provide job applicants with any specific recourse if they apply for a job for which AI is used in the selection process and they have concerns about the fairness or appropriateness of the tool used. One such recourse could be a right to demand an explanation.

The Consumer Privacy Protection Act (CPPA), which is part of the federal government’s Bill C-27, currently before Parliament, provides a right to an explanation to those about whom an automated decision, prediction or recommendation is made. Sections 63(3) and (4) provide:

(3) If the organization has used an automated decision system to make a prediction, recommendation or decision about the individual that could have a significant impact on them, the organization must, on request by the individual, provide them with an explanation of the prediction, recommendation or decision.

(4) The explanation must indicate the type of personal information that was used to make the prediction, recommendation or decision, the source of the information and the reasons or principal factors that led to the prediction, recommendation or decision.

Subsections 63(3) and (4) are fairly basic. For example, they do not include a right of review of the decision by a human. But something like this would still be a starting point for a person seeking information about the process by which their employment application was screened or evaluated. The right to an explanation in the CPPA will extend to decisions, recommendations and predictions made with respect to employees of federal works, undertakings, and businesses. However, it will not apply to the use of AI systems in provincially regulated employment sectors. Without a private sector data protection law of its own – or without a right to an explanation to accompany the proposed s. 8.4 – provincially regulated employees in Ontario will be out of luck.

In contrast, Quebec’s recent amendments to its private sector data protection law provide for a more extensive right to an explanation in the case of automated decision-making – and one that applies to the employment and hiring context. Section 12.1 provides:

12.1. Any person carrying on an enterprise who uses personal information to render a decision based exclusively on an automated processing of such information must inform the person concerned accordingly not later than at the time it informs the person of the decision.

He must also inform the person concerned, at the latter’s request,

(1) of the personal information used to render the decision;

(2) of the reasons and the principal factors and parameters that led to the decision; and

(3) of the right of the person concerned to have the personal information used to render the decision corrected.

The person concerned must be given the opportunity to submit observations to a member of the personnel of the enterprise who is in a position to review the decision.

Section 12.1 thus combines a notice requirement with, at the request of the individual, a right to an explanation. In addition, the affected individual can “submit observations” to an appropriate person within the organization who “is in a position to review the decision”. This right to an explanation is triggered only by decisions that are based exclusively on automated processing of personal information – and the scope of the right to an explanation is relatively narrow. However, it still goes well beyond Ontario’s Bill 149, which creates a transparency requirement with nothing further.

4. Scope

Bill 149 applies to the use of “artificial intelligence to screen, assess or select applicants”. Bill C-27 and Quebec’s law, both referenced above, are focused on “automated decision-making”. Although automated decision-making is generally considered a form of AI (it is defined in C-27 as “any technology that assists or replaces the judgment of human decision-makers through the use of a rules-based system, regression analysis, predictive analytics, machine learning, deep learning, a neural network or other technique”) it is possible that in an era of generative AI technologies, the wording chosen for Bill 149 is more inclusive. In other words, there may be uses of AI that are not decision-making, predicting or recommending, but that can still used in screening, assessing or hiring processes. However, it should be noted that Ontario’s Bill 149 is also less inclusive than Bill C-27 or Quebec’s law because it focuses only on screening, assessment or selecting applicants for a position. It does not apply to the use of AI tools to monitor, evaluate or assess the performance of existing employees or to make decisions regarding promotion, compensation, retention, or other employment issues – something which would be covered by Quebec’s law (and by Bill C-27 for employees in federally regulated employment). Although arguably the requirements regarding electronic workplace monitoring added to the Employment Standards Act in 2022 might provide transparency about the existence of electronic forms of surveillance (which could include those used to feed data to AI systems), these transparency obligations apply only in workplaces with more than 25 employees, and there are no employee rights linked to the use of these data in automated or AI-enabled decision-making systems.

5. Discriminatory Bias

A very significant concern with the use of AI systems for decision-making about humans is the potential for discriminatory bias in the output of these systems. This is largely because systems are trained on existing and historical data. Where such data are affected by past discriminatory practices (for example, a tendency to hire men rather than women, or white, able-bodied, heterosexual people over those from equity-deserving communities) then there is a risk that automated processes will replicate and exacerbate these biases. Transparency about the use of an AI tool alone in such a context is not much help – particularly if there is no accompanying right to an explanation. Of course, human rights legislation applies to the employment context, and it will still be open to an employee who believes they have been discriminated against to bring a complaint to the Ontario Human Rights Commission. However, without a right to an explanation, and in the face of proprietary and closed systems, proving discrimination may be challenging and may require considerable resources and expertise. It may also require changes to human rights legislation to specifically address algorithmic discrimination. Without these changes in place, and without adequate resourcing to support the OHRC’s work to address algorithmic bias, recourse under human rights legislation may be extremely challenging.

 

6. Conclusion and Recommendations

This exploration of Bill 149’s transparency requirements regarding the use of AI in the hiring process in Ontario reveals the limited scope of the proposal. Its need for regulations in order take effect has the potential to considerably delay its implementation. It provides for notice but not for a right to an explanation or for human review of AI decisions. There is also a need to make better use of existing regulators (particularly privacy and human rights commissions). The issue of the use of AI in recruitment (or in the workplace more generally in Ontario) may require more than just tweaks to the Employment Standards Act but may also demand amendments to Ontario’s Human Rights Code and perhaps even specific privacy legislation at the very least aimed at the employment sector in Ontario.

Recommendations:

1. Redraft the provision so that the core obligations take effect without need for regulations or ensure that the necessary regulations to give effect to this provision are put in place promptly.

2. Amend s. 8.4 (1) to either include the elements that are required in any notice of the use of an AI system or provide for the inclusion of such criteria in regulations (so long as doing so does not further delay the coming into effect of the provision).

3. Provide for a right to an explanation to accompany s. 8.4(1). An alternative to this would be a broader right to an explanation in provincial private sector legislation or in privacy legislation for employees in provincially regulated sectors in Ontario, but this would be much slower than the inclusion of a basic right to an explanation in s. 8.4. The right to an explanation could also include a right to submit observations to a person in a position to review any decision or outcome.

4. Extend the notice requirement to other uses of AI to assess, evaluate and monitor the performance of employees in provincially regulated workplaces in Ontario. Ideally, a right to an explanation should also be provided in this context.

5. Ensure that individuals who are concerned that they have been discriminated against by the use of AI systems in recruitment (as well as employees who have similar concerns regarding the use of AI in performance evaluation and assessment) have adequate and appropriate recourse under Ontario’s Human Rights Code, and that the Ontario Human Rights Commission is adequately resourced to address these concerns.

Published in Privacy

The federal government’s proposed Artificial Intelligence and Data Act (AIDA) (Part III of Bill C-27) - contained some data governance requirements for anonymized data used in AI in its original version. These were meant to dovetail with changes to PIPEDA reflected in the Consumer Privacy Protection Act (CPPA) (Part I of Bill C-27). The CPPA provides in s. 6(5) that “this Act does not apply in respect of personal information that has been anonymized.” Although no such provision is found in PIPEDA, this is, to all practical effects, the state of the law under PIPEDA. PIPEDA applies to “personal information”, which is defined as “information about an identifiable individual”. If someone is not identifiable, then it is not personal information, and the law does not apply. This was the conclusion reached, for example, in the 2020 Cadillac Fairview joint finding of the federal Privacy Commissioner and his counterparts from BC and Alberta. PIPEDA does apply to pseudonymized information because such information ultimately permits reidentification.

The standard for identifiability under PIPEDA had been set by the courts as a “’serious possibility’ that an individual could be identified through the use of that information, alone or in combination with other available information.” (Cadillac Fairview at para 143). It is not an absolute standard (although the proposed definition for anonymized data in C-27 currently seems closer to absolute). In any event, the original version of AIDA was meant to offer comfort to those concerned with the flat-out exclusion of anonymized data from the scope of the CPPA. Section 6 of AIDA provided that:

6. A person who carries out any regulated activity and who processes or makes available anonymized data in the course of that activity must, in accordance with the regulations, establish measures with respect to

(a) the manner in which data is anonymized; and

(b) the use or management of anonymized data.

Problematically, however, AIDA only provided for data governance with respect to this particular subset of data. It contained no governance requirements for personal, pseudonymized, or non-personal data. Artificial intelligence systems will be only as good as the data on which they are trained. Data governance is a fundamental element of proper AI regulation – and it must address more than anonymized personal data.

This is an area where the amendments to AIDA proposed by the Minister of Industry demonstrate clear improvements over the original version. To begin with, the old s. 6 is removed from AIDA. Instead of specific governance obligations for anonymized data, we see some new obligations introduced regarding data more generally. For example, as part of the set of obligations relating to general-purpose AI systems, there is a requirement to ensure that “measures respecting the data used in developing the system have been established in accordance with the regulations” (s. 7(1)a)). There is also an obligation to maintain records “relating to the data and processes used in developing the general-purpose system and in assessing the system’s capabilities and limitations” (s. 7(2)(b)). There are similar obligations the case of machine learning models that are intended to be incorporated into high-impact systems (s. 9(1)(a) and 9(2)(a)). Of course, whether this is an actual improvement will depend on the content of the regulations. But at least there is a clear signal that data governance obligations are expanded under the proposed amendments to AIDA.

Broader data governance requirements in AIDA are a good thing. They will apply to data generally including personal and anonymized data. Personal data used in AI will also continue to be governed under privacy legislation and privacy commissioners will still have a say about whether data have been properly anonymized. In the case of PIPEDA (or the CPPA if and when it is eventually enacted), the set of principles for the development and use of generative AI issued by federal, provincial, and territorial privacy commissioners on December 8, 2023 make it clear that the commissioners understand their enabling legislation to provide them with the authority to govern a considerable number of issues relating to the use of personal data in AI, whether in the public or private sector. This set of principles send a strong signal to federal and provincial governments alike that privacy laws and privacy regulators have a clear role to play in relation to emerging and evolving AI technologies and that the commissioners are fully engaged. It is also an encouraging example of federal, provincial and territorial co-operation among regulators to provide a coherent common position on key issues in relation to AI governance.

 

Published in Privacy

This is Part III of a series of posts that look at the proposed amendments to Canada’s Artificial Intelligence and Data Act (which itself is still a Bill, currently before the INDU Committee for study). Part I provided a bit of context and a consideration of some of the new definitions in the Bill. Part II looked at the categories of ‘high-impact’ AI that the Bill now proposes to govern. This post looks at the changed role of the AI and Data Commissioner.

The original version of the Artificial Intelligence and Data Act (Part II of Bill C-27) received considerable criticism for its oversight mechanisms. Legal obligations for the ethical and transparent governance of AI, after all, depend upon appropriate oversight and enforcement for their effectiveness. Although AIDA proposed the creation of an AI and Data Commissioner (Commissioner), this was never meant to be an independent regulator. Ultimately, AIDA placed most of the oversight obligations in the hands of the Minister of Industry – the same Minister responsible for supporting the growth of Canada’s AI sector. Critics considered this to be a conflict of interest. A series of proposed amendments to AIDA are meant to address these concerns by reworking the role of the Commissioner.

Section 33(1) of AIDA makes it clear that the AI and Data Commissioner will be a “senior official of the department over which the Minister presides”, and their appointment involves being designated by the Minister. This has not changed, although the amendments would delete from this provision language stating that the Commissioner’s role is “to assist the Minister in the administration and enforcement” of AIDA.

The proposed amendments elevate the Commissioner somewhat, giving them a series of powers and duties, to which the Minister can add through delegation (s. 33(3)). So, for example, it will be the newly empowered Commissioner (Commissioner 2.0) who receives reports from those managing a general-purpose or high impact system where there are reasonable grounds to suspect that the use of the system has caused serious harm (s. 8.2(1)(e), s. 11(1)(g)). Commissioner 2.0 can also order someone managing or making available a general-purpose system to provide them with the accountability framework they are required to create under s. 12 (s. 13(1)) and can provide guidance or recommend corrections to that framework (s. 13(2)). Commissioner 2.0 can compel those making available or managing an AI system to provide the Commissioner with an assessment of whether the system is high impact, and in relation to which subclass of high impact systems set out in the schedule. Commissioner 2.0 can agree or disagree with the assessment, although if they disagree, their authority seems limited to informing the entity in writing with their reasons for disagreement.

More significant are Commissioner 2.0’s audit powers. Under the original version of AIDA, these were to be exercised by the Minister – the powers are now those of the Commissioner (s. 15(1)). Further, Commissioner 2.0 may order (previously this was framed as “require”) that the person either conduct an audit themselves or that the person engage the services of an independent auditor. The proposed amendments also empower the Commissioner to conduct an audit to determine if there is a possible contravention of AIDA. This strengthens the audit powers by ensuring that there is at least an option that is not at least somewhat under the control of the party being audited. The proposed amendments give Commissioner 2.0 additional powers necessary to conduct an audit and to carry out testing of an AI system (s. 15(2.1)). Where Commissioner 2.0 conducts an audit, they must provide the audited party with a copy of the report (s. 15(3.1)) and where the audit is conducted by the person responsible or someone retained by them, they must provide a copy to the Commissioner (s. 15(4)).

The Minister still retains some role with respect to audits. He or she may request that the Commissioner conduct an audit. In an attempt to preserve some independence of Commissioner 2.0, the Commissioner, when receiving such a request, may either carry out the audit or decline to do so on the basis that there are no reasonable grounds for an audit, so long as they provide the Minister with their reasons (s. 15.1(1)(b)). The Minister may also order a person to take actions to bring themselves into compliance with the law (s. 16) or to cease making available or terminate the operation of a system if the Minister considers compliance to be impossible (s. 16(b)) or has reasonable grounds to believe that the use of the system “gives rise to a risk of imminent and serious harm” (s. 17(1)).

As noted above, Commissioner 2.0 (a mere employee in the Minister’s department) will have order making powers under the amendments. This is something the Privacy Commissioner of Canada, an independent agent of Parliament, appointed by the Governor in Council, is hoping to get in Bill C-27. If so, it will be for the first time since the enactment of PIPEDA in 2000. Orders of Commissioner 2.0 or the Minister can become enforceable as orders of the Federal Court under s. 20.

Commissioner 2.0 is also empowered to share information with a list of federal or provincial government regulators where they have “reasonable grounds to believe that the information may be relevant to the administration or enforcement by the recipient of another Act of Parliament or of a provincial legislature.” (s. 26(1)). Reciprocally, under a new provision, federal regulators may also share information with the Commissioner (s. 26.1). Additionally, Commissioner 2.0 may “enter into arrangements” with different federal regulators and/or the Ministers of Health and Transport in order to assist those actors with the “exercise of their powers or the performance of their functions and duties” in relation to AI (s. 33.1). These new provisions strengthen a more horizontal, multi-regulator approach to governing AI which is an improvement in the Bill, although this might eventually need to be supplemented by corresponding legislative amendments – and additional funding – to better enable the other commissioners to address AI-related issues that fit within their areas of competence.

The amendments also impose upon Commissioner 2.0 a new duty to report on the administration and enforcement of AIDA – such a report is to be “published on a publicly available website”. (s. 35.1) The annual reporting requirement is important as it will increase transparency regarding the oversight and enforcement of AIDA. For his or her part, the Minister is empowered to publish information, where it is in the public interest, regarding any contravention of AIDA or where the use of a system gives rise to a serious risk of imminent harm (ss. 27 and 28).

Interestingly, AIDA, which provides for the potential imposition of administrative monetary penalties for contraventions of the Act does not indicate who is responsible for setting and imposing these penalties. Section 29(1)(g) makes it clear that “the persons or classes of persons who may exercise any power, or perform any duty or function, in relation to the [AMP] scheme” is left to be articulated in regulations.

The AIDA also makes it an offence under s. 30 for anyone to obstruct or provide false or misleading information to “the Minister, anyone acting on behalf of the Minister or an independent auditor in the exercise of their powers or performance of their duties or functions under this Part.” This remains unchanged from the original version of AIDA. Presumably, since Commissioner 2.0 would exercise a great many of the oversight functions, this is meant to apply to the obstruction or misleading of the Commissioner – but it will only do so if the Commissioner is characterized as someone “acting on behalf of the Minister”. This is not language of independence, but then there are other features of AIDA that also counter any view that even Commissioner 2.0 is truly independent (and I mean others besides the fact that they are an employee under the authority of the Minister and handpicked by the Minister). Most notable of these is that should the Commissioner become incapacitated or absent, or should they simply never be designated by the Minister, it is the Minister who will exercise their powers and duties (s. 33(4)).

In sum, then, the proposed amendments to AIDA attempt to give some separation between the Minister and Commissioner 2.0 in terms of oversight and enforcement. At the end of the day, however, Commissioner 2.0 is still the Minister’s hand-picked subordinate. Commissioner 2.0 does not serve for a specified term and has no security of tenure. In their absence, the Minister exercises their powers. It falls far short of independence.

Published in Privacy

My previous post looked at some of the new definitions in the proposed amendments to the Artificial Intelligence and Data Act (AIDA) which is Part III of Bill C-27. These include a definition of “high impact” AI, and a schedule of classes of high-impact AI (the Schedule is reproduced at the end of this post). The addition of the schedule changes AIDA considerably, and that is the focus of this post.

The first two classes in the Schedule capture contexts that can clearly affect individuals. Class 1 addresses AI used in most aspects of employment, and Class 2 relates to the provision of services. On the provision of services (which could include things like banking and insurance), the wording signals that it will apply to decision-making about the provision of services, their cost, or the prioritization of recipients. To be clear, AIDA does not prohibit systems with these functions. They are simply characterized as “high impact” so that they will be subject to governance obligations. A system to determine creditworthiness can still reject individuals; and companies can still prioritize preferred customers – as long as the systems are sufficiently transparent, free from bias and do not cause harm.

There is, however, one area which seems to fall through the cracks of Classes 1 & 2: rental accommodation. A lease is an interest in land – it is not a service. Human rights legislation in Canada typically refers to accommodation separately from services for this reason. AI applications are already being used to screen and select tenants for rental accommodation. In the midst of a housing crisis, this is surely an area that is high-impact and where the risks of harm from flawed AI to individuals and families searching for a place to live are significant. This gap needs to be addressed – perhaps simply by adding “or accommodation” after each use of the term “service” in Class 2.

Class 3 rightly identifies biometric systems as high risk. It also includes systems that use biometrics in “the assessment of an individual’s behaviour or state of mind.” Key to the scope of this section will be the definition of “biometric”. Some consider biometric data to be exclusively physiological data (fingerprints, iris scans, measurements of facial features, etc.). Yet others include behavioral data in this class if it is used for the second identified purpose – the assessment of behaviour or state of mind. Behavioural data, though, is potentially a very broad category. It can include data about a person’s gait, or their speech or keystroke patterns. Cast even more broadly, it could include things such as “geo-location and IP addresses”, “purchasing habits”, “patterns of device use” or even “browser history and cookies”. If that is the intention behind Class 3, then conventional biometric AI should be Part One of this class; Part Two should be the use of an AI system to assess an individual’s behaviour or state of mind (without referring specifically to biometrics in order to avoid confusion). This would also, importantly, capture the highly controversial area of AI for affect recognition. It would be unfortunate if the framing of the class as ‘biometrics’ led to an unduly narrow interpretation of the kind of systems or data involved. The explanatory note in the Minister’s cover letter for this provision seems to suggest (although it is not clear) that it is purely physiological biometric data that is intended for inclusion and not a broader category. If this is so, then Class 3 seems unduly narrow.

Class 4 is likely to be controversial. It addresses content moderation and the prioritization and presentation of content online and identifies these as high-impact algorithmic activities. Such systems are in widespread use in the online context. The explanatory note from the Minister observes that such systems “have important potential impacts on Canadians’ ability to express themselves, as well as pervasive effects at societal scale” (at p. 4). This is certainly true although the impact is less direct and obvious than the impact of a hiring algorithm, for example. Further, although an algorithm that presents a viewer of online streaming services with suggestions for content could have the effect of channeling a viewer’s attention in certain directions, it is hard to see this as “high impact” in many contexts, especially since there are multiple sources of suggestions for online viewing (including word of mouth). That does not mean that feedback loops and filter bubbles (especially in social media) do not contribute to significant social harms – but it does make this high impact class feel large and unwieldy. The Minister’s cover letter indicates that each of the high-impact classes presents “distinct risk profiles and consequently will require distinct risk management strategies.” (at p. 2). Further, he notes that the obligations that will be imposed “are intended to scale in proportion to the risks they present. A low risk use within a class would require correspondingly minimal mitigation effort.” (at p. 2). Much will clearly depend on regulations.

Class 5 relates to the use of AI in health care or emergency services, although it explicitly excludes medical devices because these are already addressed by Health Canada (which recently consulted on the regulation of AI-enabled medical devices). This category also demonstrates some of the complexity of regulating AI in Canada’s federal system. Many hospital-based AI technologies are being developed by researchers affiliated with the hospitals and who are not engaged in the interprovincial or international trade and commerce which is necessary for AIDA to apply. AIDA will only apply to those systems developed externally and in the context of international or interprovincial trade and commerce. While this will still capture many applications, it will not capture all – creating different levels of governance within the same health care context.

It is also not clear what is meant, in Class 5, by “use of AI in matters relating to health care”. This could be interpreted to mean health care that is provided within what is understood as the health care system. Understood more broadly, it could extend to health-related apps – for example, one of the many available AI-enabled sleep trackers, or an AI-enabled weight loss tool (to give just two examples). I suspect that what is intended is the former, even though, with health care in crisis and more people turning to alternate means to address their health issues, health-related AI technologies might well deserve to be categorized as high-impact.

Class 6 involves the use of an AI system by a court or administrative body “in making a determination in respect of an individual who is a party to proceedings before the court or administrative body.” In the first place, this is clearly not meant to apply to automated decision-making generally – it seems to be limited to judicial or quasi-judicial contexts. Class 6 must also be reconciled with s. 3 of AIDA, which provides that AIDA does not apply “with respect to a government institution as defined in s. 3 of the Privacy Act.” This includes the Immigration and Refugee Board, for example, as well as the Canadian Human Rights Commission, the Parole Board, and the Veterans Review and Appeal Board. Making sense of this, then, it would be the tools used by courts or tribunals and developed or deployed in the course of interprovincial or international trade and commerce that would be considered high impact. The example given in the Minister’s letter seems to support this – it is of an AI system that provides an assessment of “risk of recidivism based on historical data” (at p. 5).

However, Class 6 is confusing because it identifies the context rather than the tools as high impact. Note that the previous classes address the use of AI “in matters relating to” the subject matter of the class, whereas class 6 identifies actors – the use of AI by a court or tribunal. There is a different focus. Yet the same tools used by courts and tribunals might also be used by administrative bodies or agencies that do not hold hearings or that are otherwise excluded from the application of AIDA. For example, in Ewert v. Canada, the Supreme Court of Canada considered an appeal by a Métis man who challenged the use of recidivism-risk assessment tools by Correctional Services of Canada (to which AIDA would not apply according to s. 3). If this type of tool is high-risk, it is so whether it is used by Correctional Services or a court. This suggests that the framing of Class 6 needs some work. It should perhaps be reworded to identify tools or systems as high impact if they are used to determine the rights, entitlements or status of individuals.

Class 7 addresses the use of an AI system to assist a peace officer “in the exercise and performance of their law enforcement powers, duties and function”. Although “peace officer” receives the very broad interpretation found in the Criminal Code, that definition is modified in the AIDA by language that refers to the exercise of specific law enforcement powers. This should still capture the use of a broad range of AI-enabled tools and technologies. It is an interesting question whether AIDA might apply more fulsomely to this class of AI systems (not just those developed in the course of interprovincial or international trade) as it might be considered to be rooted in the federal criminal law power.

These, then, are the different classes that are proposed initially to populate the Schedule if AIDA and its amendments are passed. The list is likely to spark debate, and there is certainly some wording that could be improved. And, while it provides much greater clarity as to what is proposed to be regulated, it is also evident that the extent to which obligations will apply will likely be further tailored in regulations to create sliding scales of obligation depending on the degree of risk posed by any given system.

AIDA Schedule:

High-Impact Systems — Uses

1. The use of an artificial intelligence system in matters relating to determinations in respect of employment, including recruitment, referral, hiring, remuneration, promotion, training, apprenticeship, transfer or termination.

2. The use of an artificial intelligence system in matters relating to

(a) the determination of whether to provide services to an individual;

(b) the determination of the type or cost of services to be provided to an individual; or

(c) the prioritization of the services to be provided to individuals.

3. The use of an artificial intelligence system to process biometric information in matters relating to

(a) the identification of an individual, other than in cases in which the biometric information is processed with the individual’s consent to authenticate their identity; or

(b) the assessment of an individual’s behaviour or state of mind.

4. The use of an artificial intelligence system in matters relating to

(a) the moderation of content that is found on an online communications platform, including a search engine or social media service; or

(b) the prioritization of the presentation of such content.

5. The use of an artificial intelligence system in matters relating to health care or emergency services, excluding a use referred to in any of paragraphs (a) to (e) of the definition device in section 2 of the Food and Drugs Act that is in relation to humans.

6. The use of an artificial intelligence system by a court or administrative body in making a determination in respect of an individual who is a party to proceedings before the court or administrative body.

7. The use of an artificial intelligence system to assist a peace officer, as defined in section 2 of the Criminal Code, in the exercise and performance of their law enforcement powers, duties and functions.

Published in Privacy

The government of the United Kingdom has published a consultation paper seeking input into its proposal for AI regulation. The paper is aptly titled A pro-innovation approach to AI regulation, since it restates that point insistently throughout the document. The UK proposal provides an interesting contrast to Canada’s AI governance bill currently before Parliament.

Both Canada and the UK set out to regulate AI systems with the twin goals of supporting innovation on the one hand, and building trust in AI on the other. (Note here that the second goal is to build trust in AI, not to protect the public. Although the protection of the public is acknowledged as one way to build trust, there is a subtle distinction here). However, beyond these shared goals, the proposals are quite different. Canada’s approach in Part 3 of Bill C-27 (the Artificial Intelligence and Data Act (AIDA)) is to create a framework to regulate as yet undefined “high impact” AI. The definition of “high impact” as well as many other essential elements of the bill are left to be articulated in regulations. According to a recently published companion document to the AIDA, leaving so much of the detail to regulations is how the government proposes to keep the law ‘agile’ – i.e. capable of responding to a rapidly evolving technological context. The proposal would also provide some governance for anonymized data by imposing general requirements to document the use of anonymized personal information in AI innovation. The Minister of Innovation is made generally responsible for oversight and enforcement. For example, the AIDA gives the Minister of Innovation the authority (eventually) to impose stiff administrative monetary penalties on bad actors. The Canadian approach is similar to that in the EU AI Act in that it aims for a broad regulation of AI technologies, and it chooses legislation as the vehicle to do so. It is different in that the EU AI Act is far more detailed and prescriptive; the AIDA leaves the bulk of its actual legal requirements to be developed in regulations.

The UK proposal is notably different from either of these approaches. Rather than create a new piece of legislation and/or a new regulatory authority, the UK proposes to set out five principles for responsible AI development and use. Existing regulators will be encouraged and, if necessary, specifically empowered, to regulate AI according to these principles within their spheres of regulatory authority. Examples of regulators who will be engaged in this framework include the Information Commissioner’s Office, regulators for human rights, consumer protection, health care products and medical devices, and competition law. The UK scheme also accepts that there may need to be an entity within government that can perform some centralized support functions. These may include monitoring and evaluation, education and awareness, international interoperability, horizon scanning and gap analysis, and supporting testbeds and sandboxes. Because of the risk that some AI technologies or issues may fall through the cracks between existing regulatory schemes, the government anticipates that regulators will assist government in identifying gaps and proposing appropriate actions. These could include adapting the mandates of existing regulators or providing new legislative measures if necessary.

Although Canada’s federal government has labelled its approach to AI regulation as ‘agile’, it is clear that the UK approach is much closer to the concept of agile regulation. Encouraging existing regulators to adapt the stated AI principles to their remit and to provide guidance on how they will actualize these principles will allow them to move quickly, so long as there are no obvious gaps in legal authority. By contrast, even once passed, it will take at least two years for Canada’s AIDA to have its normative blanks filled in by regulations. And, even if regulations might be somewhat easier to update than statutes, guidance is even more responsive, giving regulators greater room to manoeuvre in a changing technological landscape. Embracing the precepts of agile regulation, the UK scheme emphasizes the need to gather data about the successes and failures of regulation itself in order to adapt as required. On the other hand, while empowering (and resourcing) existing regulators will have clear benefits in terms of agility, the regulatory gaps could well be important ones – with the governance of large language models such as ChatGPT as one example. While privacy regulators are beginning to flex their regulatory muscles in the direction of ChatGPT, data protection law will only address a subset of the issues raised by this rapidly evolving technology. In Canada, AIDA’s governance requirements will be specific to risk-based regulation of AI, and will apply to all those who design, develop or make AI systems available for use (unless of course they are explicitly excluded under one of the many actual and potential exceptions).

Of course, the scheme in the AIDA may end up as more of a hybrid between the EU and the UK approaches in that the definition of “high impact” AI (to which the AIDA will apply) may be shaped not just by the degree of impact of the AI system at issue but also by the existence of other suitable regulatory frameworks. In other words, the companion document suggests that some existing regulators (health, consumer protection, human rights, financial institutions) have already taken steps to extend their remit to address the use of AI technologies within their spheres of competence. In this regard, the companion document speaks of “regulatory gaps that must be filled” by a statute such as AIDA as well as the need for the AIDA to integrate “seamlessly with existing Canadian legal frameworks”. Although it is still unclear whether the AIDA will serve only to fill regulatory gaps, or will provide two distinct layers of regulation in some cases, one of the criteria for identifying what constitutes a “high impact” system includes “[t]he degree to which the risks are adequately regulated under another law”. The lack of clarity in the Canadian approach is one of its flaws.

There is a certain attractiveness in the idea of a regulatory approach like that proposed by the UK – one that begins with existing regulators being both specifically directed and further enabled to address AI regulation within their areas of responsibility. As noted earlier, it seems far more agile than Canada’s rather clunky bill. Yet such an approach is much easier to adopt in a unitary state than in a federal system such as Canada’s. In Canada, some of the regulatory gaps are with respect to matters otherwise under provincial jurisdiction. Thus, it is not so simple in Canada to propose to empower and resource all implicated regulators, nor is it as easy to fill gaps once they are identified. These regulators and the gaps between them might fall under the jurisdiction of any one of 13 different governments. The UK acknowledges (and defers) its own challenges in this regard with respect to devolution at paragraph 113 of its white paper, where it states: “We will continue to consider any devolution impacts of AI regulation as the policy develops and in advance of any legislative action”. Instead, the AIDA, Canada leverages its general trade and commerce power in an attempt to provide AI governance that is as comprehensive as possible. It isn’t pretty (since it will not capture all AI innovation that might have impacts on people) but it is part of the reality of the federal state (or the state of federalism) in which we find ourselves.

Published in Privacy
Tuesday, 21 March 2023 06:50

Explaining the AI and Data Act

The federal government’s proposed Artificial Intelligence and Data Act (AIDA) is currently before Parliament as part of Bill C-27, a bill that will also reform Canada’s private sector data protection law. The AIDA, which I have discussed in more detail in a series of blog posts (here, here, and here), has been criticized for being a shell of a law with essential components (including the definition of the “high impact AI” to which it will apply) being left to as-yet undrafted regulations. The paucity of detail in the AIDA, combined with the lack of public consultation, has prompted considerable frustration and concern from AI developers and from civil society alike. In response to these concerns, the government published, on March 13, 2023, a companion document that explains the government’s thinking behind the AIDA. The document is a useful read as it makes clear some of the rationales for different choices that have been made in the bill. It also obliquely engages with many of the critiques that have been leveled at the AIDA. Unlike a consultation document, however, where feedback is invited to improve what is being proposed, the companion document is essentially an apology (in the Greek sense of the word) – something that is written in defense or explanation. At this stage, any changes will have to come as amendments to the bill.

Calling this a ‘companion document’ also somewhat tests the notion of “companion”, since it was published nine months after the AIDA was introduced in Parliament in June 2022. The document explains that the government seeks to take “the first step towards a new regulatory system designed to guide AI innovation in a positive direction, and to encourage the responsible adoption of AI technologies by Canadians and Canadian businesses.” The AIDA comes on the heels of the European Union’s draft AI Act – a document that is both more comprehensive and far more widely consulted upon. Pressure on Canada to regulate AI is heightened by the activity in the EU. This is evident in the introduction to the companion document, which speaks of the need to work with international partners to achieve global protection for Canadians and to ensure that “Canadian firms can be recognized internationally as meeting robust standards.”

An important critique of the AIDA has been that it will apply only to “high impact” AI. By contrast, the EU AI Act sets a sliding scale of obligations, with the most stringent obligations applying to high risk applications, and minimal obligations for low risk AI. In the AIDA companion document, there is no explanation of why the AIDA is limited to high impact AI. The government explains that defining the scope of the Act in regulations will allow for greater precision, as well as for updates as technology progresses. The companion document offers some clues about what the government considers relevant to determining whether an AI system is high-impact. Factors include the type of harm, the severity of harm, and the scale of use. Although this may help understand the concept of high impact, it does not explain why governance was only considered for high and not medium or low impact AI. This is something that cannot be fixed by the drafting of regulations. The bill would have to be specifically amended to provide for governance for AI with different levels of impact according to a sliding scale of obligations.

Another important critique of the AIDA has been that it unduly focuses on individual rather than collective or broader harms. As the US’s NIST AI Risk Management Framework aptly notes, AI technologies “pose risks that can negatively impact individuals, groups, organizations, communities, society, the environment and the planet” (at p. 1). The AIDA companion document addresses this critique by noting that the bill is concerned both with individual harms and with systemic bias (defined as discrimination). Yet, while it is crucially important to address the potential for systemic bias in AI, this is not the only collective harm that should be considered. The potential for AI to be used to generate and spread disinformation or misinformation, for example, can create a different kind of collective harm. Flawed AI could potentially also result in environmental damage that is the concern of all. The companion document does little to address a broader notion of harm – but how can it? The AIDA specifically refers to and defines “individual harm”, and also addresses biased output as discriminatory within the meaning of the Canadian Human Rights Act. Only amendments to the bill can broaden its scope to encompass other forms of collective harm. Such amendments are essential.

Another critique of the AIDA is that it relies for its oversight on the same Ministry that is responsible for promoting and supporting AI innovation in Canada. The companion document tackles this concern, citing the uniqueness of the AI context, and stating that “administration and enforcement decisions have important implications for policy”, such that oversight and the encouragement of innovation “would need to be [sic] work in close collaboration in the early years of the framework under the direction of the Minister.” The Minister will be assisted by a Ministry staffer who will be designated the AI and Data Commissioner. The document notes that the focus in the early days of the legislation will be on helping organizations become compliant: “The Government intends to allow ample time for the ecosystem to adjust to the new framework before enforcement actions are undertaken.” The ample time will include the (at least) two years before the necessary regulations are drafted (though note that if some key regulations are not drafted, the law will never take effect), as well as any subsequent ‘adjustment’ time. Beyond this, the document is quite explicit that compliance and enforcement should not get unnecessarily in the way of the industry. The AIDA contains other mechanisms, including requiring companies to hire their own auditors for audits and having an appointed Ministerial advisory committee to reassure those who remain concerned about governance. Yet these measures do nothing to address a core lack of independent oversight. This lack is particularly noteworthy given that the same government has proposed the creation of an ill-advised Personal Information and Data Protection Tribunal (in Part II of Bill C-27) in order to establish another layer between the Privacy Commissioner and the enforcement of Bill C-27’s proposed Consumer Privacy Protection Act. It is difficult to reconcile the almost paranoid approach taken to the Privacy Commissioner’s role with the in-house, “we’re all friends here” approach to AI governance in the AIDA. It is hard to see how this lack of a genuine oversight framework can be fixed without a substantial rewrite of the bill.

And that brings us to the reality that we must confront with this bill: AI technologies are rapidly advancing and are already having significant impacts on our lives. The AIDA is deeply flawed, and the lack of consultation is profoundly disturbing. Yet, given the scarcity of space on Parliament’s agenda and the generally fickle nature of politics, the failure of the AIDA could lead to an abandonment of attempts to regulate in this space – or could very substantially delay them. As debate unfolds over the AIDA, Parliamentarians will have to ask themselves the unfortunate question of whether the AIDA is unsalvageable, or whether it can be sufficiently amended to be better than no law at all.

 

Published in Privacy

This post is the fifth in a series on Canada’s proposed Artificial Intelligence and Data Act in Bill C-27. It considers the federal government’s constitutional authority to enact this law, along with other roles it might have played in regulating AI in Canada. Earlier posts include ones on the purpose and application of the AIDA; regulated activities; the narrow scope of the concepts of harm and bias in the AIDA and oversight and protection.

AI is a transformative technology that has the power to do amazing things, but which also has the potential to cause considerable harm. There is a global clamour to regulate AI in order to mitigate potential negative effects. At the same time, AI is seen as a driver of innovation and economies. Canada’s federal government wants to support and nurture Canada’s thriving AI sector while at the same time ensuring that there is public trust in AI. Facing similar issues, the EU introduced a draft AI Act, which is currently undergoing public debate and discussion (and which itself was the product of considerable consultation). The US government has just proposed its Blueprint for an AI Bill of Rights, and has been developing policy frameworks for AI, including the National Institute of Standards and Technology (NIST) Risk Management Framework. The EU and the US approaches are markedly different. Interestingly, in the US (which, like Canada, is a federal state) there has been considerable activity at the state level on AI regulation. Serious questions for Canada include what to do about AI, how best to do it – and who should do it.

In June 2022, the federal government introduced the proposed Artificial Intelligence and Data Act (AIDA) in Bill C-27. The AIDA takes the form of risk regulation; in other words, it is meant to anticipate and mitigate AI harms to the public. This is an ex ante approach; it is intended to address issues before they become problems. The AIDA does not provide personal remedies or recourses if anyone is harmed by AI – this is left for ex post regimes (ones that apply after harm has occurred). These will include existing recourses such as tort law (extracontractual civil liability in Quebec), and complaints to privacy, human rights or competition commissioners.

I have addressed some of the many problems I see with the AIDA in earlier posts. Here, I try to unpack issues around the federal government’s constitutional authority to enact this bill. It is not so much that they lack jurisdiction (although they might); rather, how they understand their jurisdiction can shape the nature and substance of the bill they are proposing. Further, the federal government has acted without any consultation on the AIDA prior to its surprising insertion in Bill C-27. Although it promises consultation on the regulations that will follow, this does not make up for the lack of discussion around how we should identify and address the risks posed by AI. This rushed bill is also shaped by constitutional constraints – it is AI regulation with structural limitations that have not been explored or made explicit.

Canada is a federal state, which means that the powers typically exercised by a nation state are divided between a federal and regional governments. In theory, federalism allows for regional differences to thrive within an overarching framework. However, some digital technology issues (including data protection and AI) fit uneasily within Canada’s constitutional framework. In proposing the Consumer Privacy Protection Act part of Bill C-27, for example, the federal government appears to believe that it does not have the jurisdiction to address data protection as a matter of human rights – this belief has impacted the substance of the bill.

In Canada, the federal government has jurisdiction over criminal law, trade and commerce, banking, navigation and shipping, as well as other areas where it makes more sense to have one set of rules than to have ten. The cross-cutting nature of AI, the international competition to define the rules of the game, and the federal government’s desire to take a consistent national approach to its regulation are all factors that motivated the inclusion of the AIDA in Bill C-27. The Bill’s preamble states that “the design, development and deployment of artificial intelligence systems across provincial and international borders should be consistent with national and international standards to protect individuals from potential harm”. Since we do not yet have national or international standards, the law will also enable the creation (and imposition) of standards through regulation.

The preamble’s reference to the crossing of borders signals both that the federal government is keenly aware of its constitutional limitations in this area and that it intends to base its jurisdiction on the interprovincial and international dimensions of AI. The other elements of Bill C-27 rely on the federal general trade and commerce power – this follows the approach taken in the Personal Information Protection and Electronic Documents Act (PIPEDA), which is reformed by the first two parts of C-27. There are indications that trade and commerce is also relevant to the AIDA. Section 4 of the AIDA refers to the goal of regulating “international and interprovincial trade and commerce in artificial intelligence systems by establishing common requirements applicable across Canada, for the design, development and use of those systems.” Yet the general trade and commerce power is an uneasy fit for the AIDA. The Supreme Court of Canada has laid down rules for the exercise of this power, and one of these is that it should not be used to regulate a single industry; a legislative scheme should regulate trade as a whole.

The Minister of Industry, in discussing Canada’s AI strategy has stated:

Artificial intelligence is a key part of our government’s plan to make our economy stronger than ever. The second phase of the Pan-Canadian Artificial Intelligence Strategy will help harness the full potential of AI to benefit Canadians and accelerate trustworthy technology development, while fostering diversity and cooperation across the AI domain. This collaborative effort will bring together the knowledge and expertise necessary to solidify Canada as a global leader in artificial intelligence and machine learning.

Clearly, the Minister is casting the role of AI as an overall economic transformer rather than a discrete industry. Nevertheless, although it might be argued that AI is a technology that cuts across all sectors of the economy, the AIDA applies predominantly to its design and development stages, which makes it look as if it targets a particular industry. Further, although PIPEDA (and the CPPA in the first Part of Bill C-27), are linked to trade and commerce through the transactional exchange of personal data – typically when it is collected from individuals in the course of commercial activity – the AIDA is different. Its regulatory requirements are meant to apply before any commercial activity takes place –at the design and development stage. This is worth pausing over because design and development stages may be non-commercial (in university-based research, for example) or may be purely intra-provincial. As a result, the need to comply with a law at the design and development stage, when that law is premised on interprovincial or international commercial activity, may only be discovered well after commercialization becomes a reality.

Arguably, AI might also be considered a matter of ‘national concern’ under the federal government’s residual peace, order and good government power. Matters of national concern that would fall under this power would be ones that did not exist at the time of confederation. The problem with addressing AI in this way is that it is simply not obvious that provinces could not enact legislation to govern AI – as many states have begun to do in the US.

Another possible constitutional basis is the federal criminal law power. This is used, for example, in the regulation of certain matters relating to health such as tobacco, food and drugs, medical devices and controlled substances. The Supreme Court of Canada has ruled that this power “is broad, and is circumscribed only by the requirements that the legislation must contain a prohibition accompanied by a penal sanction and must be directed at a legitimate public health evil”. The AIDA contains some prohibitions and provides for both administrative monetary penalties (AMPs). Because the AIDA focuses on “high impact” AI systems, there is an argument that it is meant to target and address those systems that have the potential to cause the most harm to health or safety. (Of course, the bill does not define “high impact” systems, so this is only conjecture.) Yet, although AMPs are available in cases of egregious non-compliance with the AIDA’s requirements, AMPs are not criminal sanctions, they are “a civil (rather than quasi-criminal) mechanism for enforcing compliance with regulatory requirements”, as noted in a report from the Ontario Attorney-General. That leaves a smattering of offences such as obstructing the work of the Minister or of auditors; knowingly designing, developing or using an AI system where the data were obtained as a result of an offence under another Act; being reckless as to whether the use of an AI system made available by the accused is likely to cause harm to an individual, and using AI intentionally to defraud the public and cause substantial economic loss to an individual. Certainly, such offences are criminal in nature and could be supported by the federal criminal law power. Yet they are easily severable from the rest of the statute. For the most part, the AIDA focuses on “establishing common requirements applicable across Canada, for the design, development and use of [AI] systems” (AIDA, s. 4).

The provinces have not been falling over themselves to regulate AI, although neither have they been entirely inactive. Ontario, for example, has been developing a framework for the public sector use of AI, and Quebec has enacted some provisions relating to automated decision-making systems in its new data protection law. Nevertheless, these steps are clearly not enough to satisfy a federal government anxious to show leadership in this area. It is thus unsurprising that Canada’s federal government has introduced legislation to regulate AI. What is surprising is that they have done so without consultation – either regarding the form of the intervention or the substance. We have yet to have an informed national conversation about AI. Further, legislation of this kind was only one option. The government could have consulted and convened experts to develop something along the lines of the US’s NIST Framework that could be adopted as a common standard/approach across jurisdictions in Canada. A Canadian framework could have been supported by the considerable work on standards already ongoing. Such an approach could have involved the creation of an agency under the authority of a properly-empowered Data Commissioner to foster co-operation in the development of national standards. This could have supported the provinces in the harmonized regulation of AI. Instead, the government has chosen to regulate AI itself through a clumsy bill that staggers uneasily between constitutional heads of power, and that leaves its normative core to be crafted in a raft of regulations that may take years to develop. It also leaves it open to the first company to be hit with an AMP to challenge the constitutionality of the framework as a whole.

Published in Privacy

The Artificial Intelligence and Data Act (AIDA) in Bill C-27 will create new obligations for those responsible for AI systems (particularly high impact systems), as well as those who process or make available anonymized data for use in AI systems. In any regulatory scheme that imposes obligations, oversight and enforcement are key issues. A long-standing critique of the Personal Information Protection and Electronic Documents Act (PIPEDA) has been that it is relatively toothless. This is addressed in the first part of Bill C-27, which reforms the data protection law to provide a suite of new enforcement powers that include order-making powers for the Privacy Commissioner and the ability to impose stiff administrative monetary penalties (AMPs). The AIDA comes with ‘teeth’ as well, although these teeth seem set within a rather fragile jaw. I will begin by identifying the oversight and enforcement powers (the teeth) and will then look at the agent of oversight and enforcement (the jaw). The table below sets out the main obligations accompanied by specific compliance measures. There is also the possibility that any breach of these obligations might be treated as either a violation or offence, although the details of these require elaboration in as-yet-to-be-drafted regulations.

 

Obligation

Oversight Power

To keep records regarding the manner in which data is anonymized and the use or management of anonymized data as well as records of assessment of whether an AI system is high risk (s. 10)

Minister may order the record-keeper to provide any of these records (s. 13(1))

 

 

Any record-keeping obligations imposed on any actor in as-yet undrafted regulations

Where there are reasonable grounds to believe that the use of a high impact system could result in harm or biased output, the Minister can order the specified person to provide these records (s. 14)

Obligation to comply with any of the requirements in ss. 6-12, or any order made under s. 13-14

Minister (on reasonable grounds to believe there has a contravention) can require the person to conduct either an internal or an external audit with respect to the possible contravention (s. 15); the audit must be provided to the Minister

 

A person who has been audited may be ordered by the Minister to implement any measure specified in the order, or to address any matter in the audit report (s. 16)

Obligation to cease using or making available a high-impact system that creates a serious risk of imminent harm

Minister may order a person responsible for a high-impact system to cease using it or making it available for use if the Minister has reasonable grounds to believe that its use gives rise to a serious risk of imminent harm (s. 17)

Transparency requirement (any person referred to in sections 6 to 12, 15 and 16)

Minister may order the person to publish on a publicly available website any information related to any of these sections of the AIDA, but there is an exception for confidential business information (s. 18)

 

Compliance with orders made by the Minister is mandatory (s. 19) and there is a procedure for them to become enforceable as orders of the Federal Court.

Although the Minister is subject to confidentiality requirements, they may disclose any information they obtain through the exercise of the above powers to certain entities if they have reasonable grounds to believe that a person carrying out a regulated activity “has contravened, or is likely to contravene, another Act of Parliament or a provincial legislature” (s. 26(1)). Those entities include the Privacy Commissioner, the Canadian Human Rights Commission, the Commissioner of Competition, the Canadian Radio-television and Telecommunications Commission, their provincial analogues, or any other person prescribed by regulation. An organization may therefore be in violation of statutes other than AIDA and may be subject to investigation and penalties under those laws.

The AIDA itself provides no mechanism for individuals to file complaints regarding any harms they may believe they have suffered, nor is there any provision for the investigation of complaints.

The AIDA sets up the Minister as the actor responsible for oversight and enforcement, but the Minister may delegate any or all of their oversight powers to the new Artificial Intelligence and Data Commissioner who is created by s. 33. The Data Commissioner is described in the AIDA as “a senior official of the department over which the Minister presides”. They are not remotely independent. Their role is “to assist the Minister” responsible for the AIDA (most likely the Minister of Industry), and they will also therefore work in the Ministry responsible for supporting the Canadian AI industry. There is essentially no real regulator under the AIDA. Instead, oversight and enforcement are provided by the same group that drafted the law and that will draft the regulations. It is not a great look, and, certainly goes against the advice of the OECD on AI governance, as Mardi Wentzel has pointed out.

The role of Data Commissioner had been first floated in the 2019 Mandate Letter to the Minister of Industry, which provided that the Minister would: “create new regulations for large digital companies to better protect people’s personal data and encourage greater competition in the digital marketplace. A newly created Data Commissioner will oversee those regulations.” The 2021 Federal Budget provided funding for the Data Commissioner, and referred to the role of this Commissioner as to “inform government and business approaches to data-driven issues to help protect people’s personal data and to encourage innovation in the digital marketplace.” In comparison with these somewhat grander ideas, the new AI and Data Commissioner role is – well – smaller than the title. It is a bit like telling your kids you’re getting them a deluxe bouncy castle for their birthday party and then on the big day tossing a couple of couch cushions on the floor instead.

To perhaps add a gloss of some ‘independent’ input into the administration of the statute, the AIDA provides for the creation of an advisory committee (s. 35) that will provide the Minister with “advice on any matters related to this Part”. However, this too is a bit of a throwaway. Neither the AIDA nor any anticipated regulations will provide for any particular composition of the advisory committee, for the appointment of a chair with a fixed term, or for any reports by the committee on its advice or activities. It is the Minister who may choose to publish advice he receives from the committee on a publicly available website (s. 35(2)).

The AIDA also provides for enforcement, which can take one of two routes. Well, one of three routes. One route is to do nothing – after all, the Minister is also responsible for supporting the AI industry in Canada– so this cannot be ruled out. A second option will be to treat a breach of any of the obligations specified in the as-yet undrafted regulations as a “violation” and impose an administrative monetary penalty (AMP). A third option is to treat a breach as an “offence” and proceed by way of prosecution (s. 30). A choice must be made between proceeding via the AMP or the offense route (s. 29(3)). Providing false information and obstruction are distinct offences (s. 30(2)). There are also separate offences in ss. 38 and 39 relating to the use of illegally obtained data and knowingly or recklessly making an AI system available for use that is likely to cause harm.

Administrative monetary penalties under Part 1 of Bill C-27 (relating to data protection) are quite steep. However, the necessary details regarding the AMPs that will be available for breach of the AIDA are to be set out in regulations that have yet to be drafted (s. 29(4)(d)). All that the AIDA really tells us about these AMPs is that their purpose is “to promote compliance with this Part and not to punish” (s. 29(2)). Note that at the bottom of the list of regulation-making powers for AMPs set out in s. 29(4). This provision allows the Minister to make regulations “respecting the persons or classes of persons who may exercise any power, or perform any duty or function, in relation to the scheme.” There is a good chance that the AMPs will (eventually) be administered by the new Personal Information and Data Tribunal, which is created in Part 2 of Bill C-27. This, at least, will provide some separation between the Minister and the imposition of financial penalties. If this is the plan, though, the draft law should say so.

It is clear that not all breaches of the obligations in the AIDA will be ones for which AMPs are available. Regulations will specify the breach of which provisions of the AIDA or its regulations will constitute a violation (s. 29(4)(a)). The regulations will also indicate whether the breach of the particular obligation is classified as minor, serious or very serious (s. 29(4)(b)). The regulations will also set out how any such proceedings will unfold. As-yet undrafted regulations will also specify the amounts or ranges of AMPS, and factors to take into account in imposing them.

This lack of important detail makes it hard not to think of the oversight and enforcement scheme in the AIDA as a rough draft sketched out on a cocktail napkin after an animated after-hours discussion of what enforcement under the AIDA should look like. Clearly, the goal is to be ‘agile’, but ‘agile’ should not be confused with slapdash. Parliament is being asked to enact a law that leaves many essential components undefined. With so much left to regulations, one wonders whether all the missing pieces can (or will) be put in place within this decade. There are instances of other federal laws left incomplete by never-drafted regulations. For example, we are still waiting for the private right of action provided for in Canada’s Anti-Spam Law, which cannot come into effect until the necessary regulations are drafted. A cynic might even say that failing to draft essential regulations is a good way to check the “enact legislation on this issue” box on the to-do list, without actually changing the status quo.

Published in Privacy

This is the first of a series of posts on the part of Bill C-27 that would enact a new Artificial Intelligence and Data Act (AIDA) in Canada. Previous posts have considered the part of the bill that would reform Canada’s private sector data protection law. This series on the AIDA begins with an overview of its purpose and application.

Bill C-27 contains the text of three proposed laws. The first is a revamped private sector data protection law. The second would establish a new Data Tribunal that is assigned a role under the data protection law. The third is a new Artificial Intelligence and Data Act (AIDA) While the two other components were present in the bill’s failed predecessor Bill C-11, the AIDA is new – and for many came as a bit of a surprise. The common thread, of course, is the government’s Digital Charter, which set out a series of commitments for building trust in the digital and data economy.

The preamble to Bill C-27, as a whole, addresses both AI and data protection concerns. Where it addresses AI regulation directly, it identifies the need to harmonize with national and international standards for the development and deployment of AI, and the importance of ensuring that AI systems uphold Canadian values in line with the principles of international human rights law. The preamble also signals a need for a more agile regulatory framework – something that might go towards justifying why so much of the substance of AI governance in the AIDA has been left to the development of regulations. Finally, the preamble speaks of a need “to foster an environment in which Canadians can seize the benefits of the digital and data-driven economy and to establish a regulatory framework that supports and protects Canadian norms and values, including the right to privacy.” This, then, frames how AI regulation (and data protection) will work in Canada – an attempt to walk a tightrope between enabling fast-paced innovation and protecting norms, values and privacy rights.

Regulating the digital economy has posed some constitutional (division of powers) challenges for the federal government, and these challenges are evident in the AIDA, particularly with respect to the scope of application of the law. Section 4 sets out the dual purposes of the legislation:

(a) to regulate international and interprovincial trade and commerce in artificial intelligence systems by establishing common requirements, applicable across Canada, for the design, development and use of those systems; and

(b) to prohibit certain conduct in relation to artificial intelligence systems that may result in serious harm to individuals or harm to their interests.

By focusing on international and interprovincial trade and commerce, the government asserts its general trade and commerce jurisdiction, without treading on the toes of the provinces, who remain responsible for intra-provincial activities. Yet, this means that there will be important gaps in AI regulation. Until the provinces act, these will be with respect to purely provincial AI solutions, whether in the public or private sectors, and, to a large extent, AI in the not-for-profit sector. However, this could get complicated since the AIDA sets out obligations for a range of actors, some of which could include international or interprovincial providers of AI systems to provincial governments.

The second purpose set out in s. 4 suggests that at least when it comes to AI systems that may result in serious harm, the federal jurisdiction over criminal law may be invoked. The AIDA creates a series of offences that could be supported by this power – yet, ultimately the offences relate to failures to meet the obligations that arise based on being engaged in a ‘regulated activity’, which takes one back to activities carried out in the course of international or interprovincial trade and commerce. The federal trade and commerce power thus remains the backbone of this bill.

Although there would be no constitutional difficulties with the federal government exerting jurisdiction over its own activities, the AIDA specifically excludes its application to federal government institutions, as defined in the Privacy Act. Significantly, it also does not apply to products, services or activities that are under the control of the Minister of National Defence, the Canadian Security Intelligence Service, the Communications Security Establishment or any other person who is responsible for a federal or provincial department or agency that is prescribed by regulation. This means that the AIDA would not apply even to those AI systems developed by the private sector for any of the listed actors. The exclusions are significant, particularly since the AIDA seems to be focussed on the prevention of harm to individuals (more on this in a forthcoming post) and the parties excluded are ones that might well develop or commission the development of AI that could (seriously) adversely impact individuals. It is possible that the government intends to introduce or rely upon other governance mechanisms to ensure that AI and personal data are not abused in these contexts. Or not. In contrast, the EU’s AI Regulation addresses the perceived need for latitude when it comes to national defence via an exception for “AI systems developed or used exclusively for military purposes” [my emphasis]. This exception is nowhere near as broad as that in the AIDA, which excludes all “products, services or activities under the control of the Minister of National defence”. Note that the Department of National Defence (DND) made headlines in 2020 when it contracted for an AI application to assist in hiring; it also made headlines in 2021 over an aborted psyops campaign in Canada. There is no reason why non-military DND uses of AI should not be subject to governance.

The government might justify excluding the federal public sector from governance under the AIDA on the basis that it is already governed by the Directive on Automated Decision-Making. This Directive applies to automated decision-making systems developed and used by the federal government, although there are numerous gaps in its application. For example, it does not apply to systems adopted before it took effect, it applies only to automated decision systems and not to other AI systems, and it currently does not apply to systems used internally (e.g., to govern public sector employees). It also does not have the enforcement measures that the AIDA has, and, since government systems could well be high-impact, this seems like a gap in governance. Consider in this respect the much-criticized ArriveCan App, designed for COVID-19 border screening and now contemplated for much broader use at border entries into Canada. The app has been criticized for its lack of transparency, and for the ‘glitch’ that sent inexplicable quarantine orders to potentially thousands of users. The ArriveCan app went through the DADM process, but clearly this is not enough to address governance issues.

Another important limit on the application of the AIDA is that most of its obligations apply only to “high impact systems”. This term is defined in the legislation as “an artificial intelligence system that meets the criteria for a high-impact system that are established in regulations.” This essentially says that this crucial term in the Bill will mean what cabinet decides it will mean at some future date. It is difficult to fully assess the significance or impact of this statute without any sense of how this term will be defined. The only obligations that appear to apply more generally are the obligation in s. 6 regarding the anonymization of data used or intended for use in AI systems, and the obligation in s. 10 to keep records regarding the anonymization measures taken.

By contrast, the EU’s AI Regulation applies to all AI systems. These fall into one of four categories: unacceptable risk, high-risk, limited risk, and low/minimal risk. Those systems that fall into the first category are banned. Those in the high-risk category are subject to the regulation’s most stringent requirements. Limited-risk AI systems need only meet certain transparency requirements and low-risk AI is essentially unregulated. Note that Canada’s approach to ‘agile’ regulation is to address only one category of AI systems – those that fall into the as-yet undefined category of high ‘impact’. It is unclear whether this is agile or supine. It is also not clear what importance should be given to the choice of the word ‘impact’ rather than ‘risk’. However, it should be noted that risk refers not just to actual but to potential harm, whereas ‘impact’ seems to suggest actual harm. Although one should not necessarily read too much into this choice of language, the fact that this important element is left to regulations means that Parliament will be asked to enact a law without understanding its full scope of application. This seems like a problem.

 

Published in Privacy

As part of my series on Bill C-27, I will be writing about both the proposed amendments to Canada’s private sector data protection law and the part of the Bill that will create a new Artificial Intelligence and Data Act (AIDA). So far, I have been writing about privacy, and my posts on consent, de-identification, data-for-good, and the right of erasure are already available. Posts on AIDA, will follow, although I still have a bit more territory on privacy to cover first. However, in the meantime, as a teaser, perhaps you might be interested in playing a bit of statutory MadLibs…...

Have you ever played MadLibs? It’s a paper-and-pencil game where someone asks the people in the room to supply a verb, noun, adverb, adjective, or body part, and the provided words are used to fill in the blanks in a story. The results are often absurd and sometimes hilarious.

The federal government’s proposal in Bill C-27 for an Artificial Intelligence and Data Act, really lends itself to a game of statutory MadLibs. This is because some of the most important parts of the bill are effectively left blank – either the Minister or the Governor-in-Council is tasked in the Bill with filling out the details in regulations. Do you want to play? Grab a pencil, and here goes:

Company X is developing an AI system that will (insert definition of ‘high impact system). It knows that this system is high impact because (insert how a company should assess impact). Company X has established measures to mitigate potential harms by (insert measures the company took to comply with the regulations) and has also recorded (insert records it kept), and published (insert information to be published).

Company X also had its system audited by an auditor who is (insert qualifications). Company X is being careful, because if it doesn’t comply with (insert a section of the Act for which non-compliance will count as a violation), it could be found to have committed a (insert degree of severity) violation. This could lead to (insert type of proceeding).

Company X, though, will be able to rely on (insert possible defence). However, if (insert possible defence) is unsuccessful, Company X may be liable to pay an Administrative Monetary Penalty if they are a (insert category of ‘person’) and if they have (insert factors to take into account). Ultimately, if they are unhappy with the outcome, they can launch a (insert a type of appeal proceeding).

Because of this regulatory scheme, Canadians can feel (insert emotion) at how their rights and interests are protected.

Published in Privacy

Canadian Trademark Law

Published in 2015 by Lexis Nexis

Canadian Trademark Law 2d Edition

Buy on LexisNexis

Electronic Commerce and Internet Law in Canada, 2nd Edition

Published in 2012 by CCH Canadian Ltd.

Electronic Commerce and Internet Law in Canada

Buy on CCH Canadian

Intellectual Property for the 21st Century

Intellectual Property Law for the 21st Century:

Interdisciplinary Approaches

Purchase from Irwin Law